
Chasing Databases: The Theoretical Evolution of Data Migration

Ben Connors

August 29, 2022

Contents

1 Introduction 2

2 Databases via Functor Categories 4
2.1 Schemas as Categories . 4
2.2 Instances as Functors . 6
2.3 Data Migration . 7
2.4 The Problem . 15
2.5 A Diversion to Monads . 16

3 Databases via Slice Categories 21
3.1 Typed Instances . 21
3.2 A Primer on Pasting Diagrams . 24
3.3 Typed Data Migration . 26
3.4 Parsing the Data Migration Functors . 30
3.5 Smaller Problems . 34

4 Databases via Algebraic Profunctors 36
4.1 Profunctors and Algebraic Theories . 36
4.2 Schemas as Algebraic Profunctors . 37
4.3 Collages and Instances . 37
4.4 Data Migration . 38
4.5 Further Development . 39

5 Conclusion 40

References 41

A Motivating Profunctors 42
A.1 Profunctors as Generalized Relations . 42
A.2 Profunctors as Generalized Bimodules . 46
A.3 Composing Profunctors . 51

1

1 Introduction

Relational databases are omnipresent in our modern world, used for storing any sort of persistent,
shared data. Relational databases are databases storing data in a tabular form, which is natural
for much of the data produced. A relational database consists of tables, each table modeling a
certain type of object or entity. Each table consists of rows, each corresponding to a specific entity
or object, and columns, each describing some attribute of that entity. The term “relational” comes
from the recognition that these entities seldom exist in isolation: we often have many relations
between objects of different types, which are precisely captured in by the concept of relations in
relational databases.
We often wish to convert data in databases into different forms for different applications, like re-
moving private information or combine multiple tables for easy access. Relational algebra provides
the customary operations and semantics for accomplishing this. Though studied earlier in pure
mathematics, relational algebra was first applied to databases in 1970 in [Cod70]. However, re-
lational algebra is rarely formulated precisely, and even more seldom in practice: typical courses
and texts on the subject rarely give concrete examples of the relational operations and instead
appeal solely to examples. This extends to many real-world situations, where relational operations
are rarely formulated formally: the desired operations are constructed using intuition and verified
by testing them (not always on test databases). The fundamental operations of relational algebra
described in [Cod70] are still in use today, with little change: they have proven to be sufficiently
general to be able to do nearly any operation we require, and sufficiently simple to be implemented
efficiently.
Category theory has found numerous applications throughout pure mathematics, especially in for-
malizing and generalizing abstract concepts. Applications to other areas, such as computer science,
have been increasing in recent years. Many of the applications to that field have come through the
angle of type theory and proof assistants: by modeling real-world situations and concepts using
precise mathematical language (often category theory), we can use proof assistants and theorem
provers to mathematically prove desired attributes and the nonexistence of many classes of errors.
This report will outline the general picture of the work done by Spivak et al. in the past decade to
model relational databases and relational algebra using category theory. This application has been
explored in the past by a number of other authors ([Spi12a] gives a number of such papers in its
introduction), but there was a dearth of publications on the subject in the 2000s. We will explore
each of the three major approaches taken by Spivak et al. in their historical order, which is also in
order of increasing complexity. First we model databases very naturally using ordinary category
theory (Section 2, based on [Spi12a]), which provides the foundation and the intuition for all further
developments. Next, we explore the concept of “typed databases” (Section 3, based on [SW15]) to
fix some of the problems encountered with the first approach. Finally, we sketch the basic ideas
for modeling databases using the concept of algebraic profunctors (Section 4, based on [SSVW16]),
which maintains the advantages of typed databases while avoiding certain technical constraints on
the theory. The intention of this report is to collect the necessary background information, provide
detailed examples and computations, and present the evolution of the theory in a unified way,
justifying each new development.
We will assume some basic familiarity with category theory (categories, functors, natural transfor-
mations, (co)limts, adjunctions); this can be obtained from the first few chapters of any introductory
text on category theory, such as [Spi14] or [Rie14] (for a more abstract perspective). Chapter 3
in [FS18] also gives a gentle introduction to category theory using databases (using the approach

2

outlined in Section 2 of this report) suitable for those wholly unfamiliar with the subject.
We do not assume much familiarity with relational databases, as the portions of the theory we will
require are relatively intuitive and will be introduced with examples. The interested reader can
consult any introductory text on the subject, e.g. [CB15], for a more detailed introduction.
This report was prepared at the University of Toronto under the supervision of Dr. Yun William
Yu to partially fulfill the requirements of an MSc degree in mathematics.

3

2 Databases via Functor Categories

2.1 Schemas as Categories

In this section, we outline the constructions given in [Spi12a].
Consider the data tables in Table 1; these are an example of a database instance, a database that
contains actual data. Each database instance is an instance of a schema: something that describes
the format of our database. One presentation of a database schema is as an entity-relationship
(ER) diagram; a simplified version of this for Table 1 is given in Figure 1.

ID First Last Department Salary
E01 Francis Poulenc D01 $15,000
E02 George Dyson D02 $14,500
E03 Charles Gounod D01 $16,000
E04 Georges Bizet D01 $24,000

ID Location Manager
D01 Paris E04
D02 London E02

Table 1: An example with two tables: one containing employees and another containing depart-
ments.

Employee
first : Str
last : Str
salary : Real

Department
location : Str

belongsTo

managedBy

managedBy; belongsTo ≃ id

Figure 1: The schema for the database instance in Table 1.

The schema has two entities, “Employee” and “Department”, and one relationship in each direction:
each employee “belongsTo” a department, and each department is “managedBy” an employee. In
our database instance these two relationships are represented by a column in each table, but for
designing database schemas it’s customary to represent them as arrows: this is because certain
relationships, like many-to-many relationships (e.g. matching people to all of the books they’ve
ever borrowed at a library: each person can borrow more than one book, and each book can
be borrowe for Table 1d by more than one person), will require their own table to represent in
most relational database softwares. Under each header is a list of attributes that the entity has,
corresponding to the columns in our example tables. We also indicate the type of each attribute
(e.g. an employee’s first name is a String of characters). We omit the unique ID field in each table
that identifies employees and departments, leaving it implicit in the schema.
We may want to impose certain “integrity constraints” on our database: doing it at the database
level can save writing and debugging code at the application level, especially if there are many
different applications that are using the database. In this case, we want to ensure that the manager
of a department actually works for that department: that is, if dept is a Department then (using
the notation of the tables) dept.Manager.Department must be dept, the same Department we
started with. We represent that in our diagram as a path constraint, written here at the bottom
of the diagram; note that we follow the convention of graph theory here, in that the leftmost edge

4

in the list “managedBy; belongsTo” is the first edge in the path and the rightmost edge is the last
(i.e. the opposite order of writing function composition in mathematics).
This format of a schema, as an ER diagram, gives us a natural way of interpreting a database
schema in terms of category theory: an ER diagram is nothing but a graph with fancy labels and
a list of path equivalences! We can easily turn such a graph into a category:

Definition 2.1. Let G = (V, E, s, d) be a (directed, multi-) graph with a collection of vertices V ,
a collection of edges E, a function s : E → V which gives the source of an edge, and a function
d : E → V which gives the destination of an edge. The free category on G, denoted FG, is the
category with

• Objects the vertices of G, Ob FG := V ; and

• Basic morphisms a → b the collection of edges with source a and destination b; and

• Morphisms freely generated by the basic morphisms along with freely-adjoined identity mor-
phisms, modulo the equivalence relation generated by associativity and composition by the
identities. ♦

This definition is somewhat annoying to write formally, but the intuition is simple: the objects are
the vertices and the morphisms a → b in FG are all of the distinct paths from a to b. By the
axioms of a category we must also add an identity morphism a → a for each vertex a. We also
want to include the path equivalences in our construction:

Definition 2.2. Given a graph G with a set of path equivalences R, the category generated by G is
the quotient category FG/ ∼ where ∼ is the equivalence relation generated by the path equivalences
R. ♦

Again, the intuition is simple: we identify any two paths in our category that are equivalent,
and also identify them in every other path (e.g. if we define the paths A; B and C; D; E to be
equivalent, we must identify them and also all other paths that contain them like F ; G; A; B; H and
F ; G; C; D; E; H).
Now that we have a way of turning a graph into a category, we’ve reduced the problem to converting
ER diagrams into ordinary graphs. The remaining question is how to interpret the fancy labels.
Our first approach will be to add a new vertex for each attribute; for our running example, this is
in Figure 2.

Employee

First

Last

Salary

Dept Location

Figure 2: One graph corresponding to the schema in Figure 1.

5

This includes includes most of the information from our ER diagram; however, we’re still missing
two things. First, we’ve ignored the information on the type of each attribute—our graph says
nothing about an employee’s first name being a string or their salary being a real number. Second,
we don’t really have any way of distinguishing between entities and their attributes: both are
vertices. Of course, we could define an attribute as a vertex with no edges leaving it, but eventually
we will need to separate the two more explicitly. We will ignore these problems for now, deferring
them both to our discussion of typed databases in Section 3.
Now that we have a way of converting a database schema from an ER diagram into a graph with
some path equivalences, we can think of a database schema as a category (the category generated
by its ER diagram interpreted as a graph). As is typical in category theory, it’s more convenient
to work in greater generality so we make the following definition:

Definition 2.3. We call any category C a database schema or just a schema. ♦

In summary:

Procedure 2.4. To convert an ER diagram into a category:

1. Create a graph G with

• A vertex for each entity and each attribute of that entry (excluding ID attributes and
foreign keys);

• An edge from A to B if:
– B is an attribute of A; or
– A has a relation to B

2. Form the free category on G, denoted FG

3. Take the quotient of FG by any path-equivalences given in the ER diagram. ♦

2.2 Instances as Functors

The whole reason we care about databases is to store data: if we want to view databases through
a categorical lense, we’d better figure out some way of representing database instances.
Consider our running example, begun in Table 1. We have a category (call it C) that represents our
schema, which is the category generated by the graph in Figure 2, modulo our path equivalences. In
order to represent the data in Table 1, we need to give a list of employees and a list of departments.
Equivalently, we need to give a list of the employee IDs and department IDs and a way to map
these to their various attributes. This sounds a lot like a functor out of C!

Definition 2.5. Let C and D be categories. The collection of D-valued database instances on C is
the collection of functors C → D. When the category D is implicit, this will be denoted by C-Inst.♦

For our purposes, D := Set: every database instance will be Set-valued. We may also want to
work with D := FinSet (finite sets), but for theoretical purposes we will want to assume that D is
complete and cocomplete.

6

Let’s figure out what this gets us: suppose we have a Set-valued instance on C, i.e. a functor
I : C → Set. For each object x ∈ C, we get a set I(x). For each morphism f : x → y in C, we get a
function If : Ix → Iy, and by functoriality this mapping must respect composition in C.
In terms of our example, we get:

• A set of employee IDs I(Employee) and likewise for all other vertices;

• A function I(Employee) → I(First) mapping an employee to their first name;

• So on for the other edges. . .

By functoriality, it also respects our path equivalences: that is, if m : I(Department) → I(Employee)
is the “managedBy” function mapping a department to its manager and d : I(Employee) →
I(Department) is the “belongsTo” function mapping an employee to their department, we must
have d ◦ m = id.
Thus, a functor C → D for some appropriate category D is, ignoring data types, exactly what we
want: giving us a set for each entity and attribute and functions between them based on the edges
connecting them is precisely giving the data that will be in our table, and functoriality is precisely
ensuring that these assignments respect our path equivalences.
The collection of functors C → D has a natural notion of morphism: namely, natural transformation.
What does a natural transformation between database instances mean? Given instances I, I ′ :
C → D and a natural transformation α : I ⇒ I ′, for each object A ∈ C we get a function
αA : I(A) → I(A′) with naturality saying that these functions respect our constraints. Thus,
these morphisms give a way of relating two database instances. For example, we could use these
morphisms to investigate how databases change over time. Thus, it seems reasonable to include
this extra structure in our definition of C-Inst:

Definition 2.6. Let C and D be categories. The category of D-valued database instances on C is
the functor category DC . When the category D is implicit, this will be denoted by C-Inst. ♦

2.3 Data Migration

The real value in this perspective on databases comes with data migration, moving data between
two schemas.
In relational algebra, we usually consider three types of operations. Projections “project” along
certain attributes, removing unnecessary data from our schema, often for security or performance
reasons. The other two, union and joins, combine multiple tables together in “dual” ways: a union
is essentially the largest way of combining tables subject to imposed constraints, and a join is the
smallest. We will show that all three operations appear very naturally in this categorical view.
Suppose we have two schemas (categories) C and D. The natural way of relating the two is using
functors; suppose we have a functor F : C → D. We now want to use this to migrate actual
instances from schema C to schema D. However, without more tools we can only take instances
from D to C: if we have an instance I : D → Set, we can compose

C D

Set

F

I◦F
I

7

to get an instance I ◦ F : C → Set. This gives us a functor F ∗ : SetD → SetC via precomposition.
This is one of the three fundamental data migration functors:

Definition 2.7. Let C, D be schemas and F : C → D a functor. The delta operator corresponding
to F is the precomposition functor ∆F := F ∗ : D-Inst → C-Inst. ♦

Trivially:

Definition 2.8. For all schemas C, D, functors F : C → D, and value category E , the functor
δF : D-Inst → C-Inst exists. ♦

This delta operator essentially creates projections. Suppose we consider only the employee table
in Figure 1. We want to give salary data to someone so they can do some statistics, but we don’t
want them to know the names or anything else about our employees. Our source schema C and
destination schema D are in Figure 3.

Employee

Salary

D
Employee

First

Last

Salary

C

Figure 3: The destination schema (left) and source schema (right) our first migration.

We want to take a C-instance (all data) and get a D-instance (less data); since the delta operator
flips the direction of a functor, we need to define a functor F : D → C. We do so in the obvious way:
we have a natural inclusion D ↪→ C, so we define F to be this inclusion (i.e. we map Employee to
Employee, Salary to Salary, and the arrow Employee → Salary to the arrow Employee → Salary).
This gives us the functor ∆F : C-Inst → D-Inst. Using our running example, the original instance
and resulting instance are in Table 4.

ID First Last Department Salary
E01 Francis Poulenc D01 $15,000
E02 George Dyson D02 $14,500
E03 Charles Gounod D01 $16,000
E04 Georges Bizet D01 $24,000

∆F7−−→

ID Salary
E01 $15,000
E02 $14,500
E03 $16,000
E04 $24,000

Figure 4: The result of our data migration using the delta functor ∆F : C-Inst → D-Inst for the
schemas in Figure 3.

This gives a “proof by example” that taking the delta operator ∆F : C-Inst → D-Inst of a functor
F : D → C allows us to represent any sort of projection operator: its extension to an actual proof
is evident.

8

How do we go the other direction? Suppose we have I : C → Set. We want:

C Set

D
F

I

∃?

This amounts to trying to solve the given lifting problem. We can do this in many ways, but
we have (up to) two universal ones called Kan extensions. These are explored in detail in most
introductory category theory texts, e.g. Chapter 6 in [Rie14].

Definition 2.9. Let F : C → D and X : C → E be functors. Consider the lifting problem:

C D

E

F

X
∃?

A left solution is a functor K : E → D and a natural transformation α : F ⇒ K ◦ X:

C D

E

F

X α
K

Note that the diagram need not commute.
We can form the collection of solutions into a category as follows:

• Objects are pairs (K : E → D, α : F ⇒ K ◦ X);

• Morphisms (K, α) → (L, β) are natural transformations γ : K → L such that (γ · X) ◦ α = β,
i.e.:

C D

E

F

X α

K

L

γ
=

C D

E

F

X β
L

The left Kan extension of F along X, denoted LanX F : E → D, is the initial object in this category
(with a natural transformation ε : F ⇒ LanX F ◦ X), i.e. for any solution (K, α) we have a unique
factorization α = η ◦ ε

C D

E

F

X ε

LanX F

K

∃!η
=

C D

E

F

X α
K

9

Dually, the right Kan extension, RanX F , is the terminal object in the category of right solutions
(reverse the direction of the natural transformation), which is the left Kan extension when the
categories C, D, E are replaced with their opposites, Cop, Dop, Eop. ♦

Definition 2.10. Recall that if C is a category, the dual category denoted Cop has the same objects
as C but all morphisms and compositions are flipped, i.e. Cop(x, y) := C(y, x) and f ◦op g := g ◦ f .♦

This first definition of a Kan extension is sometimes called a “local Kan extension” and is the most
general, since we only require a specific Kan extension LanX F to exist for a fixed functor F . This
next definition is theoretically nicer and more convenient, but less general.

Definition 2.11. Let X : C → E be a functor and D a category. We have the induced functor
given by precomposition:

DC DE
X∗

If this functor has a left adjoint, we call it the left Kan extension operation along X and denoted it
LanX . Dually, if this functor has a right adjoint we call it the right Kan extension operation along
X and denote it RanX :

DC DE

LanX

⊥
⊥

RanX

X∗ (2.1)
♦

The intuition is that the left Kan extension is the “smallest” left solution and the right Kan
extension is the “largest” right solution.
This intuition is entirely correct in the case of posets, as will be explored in detail when we discuss
profunctors in Appendix A: given a partial order ≤ on a set X, we can form a category PX with

• Objects the elements of X;

• The morphisms PX(x, y) either empty if x ̸≤ y or containing a unique morphism if x ≤ y.

If we have two poset categories PX and PY , a functor F : PX → PY is precisely a monotone
increasing map between the underlying posets, f : X → Y . A natural transformation between
two functors F, G : PX → PY asserts that F (x) ≤ G(x) for all objects x ∈ PX (naturality is
degenerate since we have at most one morphism between two objects). If we consider the lifting
problem:

PX PY

PZ

F

X
∃?

a left solution G : PZ → PY comes with a natural transformation α : F ⇒ G ◦ X, i.e. F (x) ≤
(G ◦ X)(x) for all x ∈ PX. The universal property of the left Kan extension means we have both
a natural transformation β : F ⇒ LanX F ◦ X and a natural transformation γ : LanX F ⇒ G, so
we have F (x) ≤ (LanX F ◦ X)(x) for all x and also (LanX F)(z) ≤ G(z) for all z ∈ PZ, so LanX F
is indeed the smallest left solution in a precise sense. Dually, RanX F is the largest right solution.
Returning to databases, given a functor F : C → D we can come up with two other functors
LanF , RanF : C-Inst → D-Inst that don’t flip the direction of our functor. We give these special
names:

10

Definition 2.12. Let C, D be schemas and F : C → D a functor. The sigma (union) operator
corresponding to F is the functor ΣF := LanF : C-Inst → D-Inst (when it exists). The pi (join)
operator corresponding to F is the functor ΠF := RanF : C-Inst → D-Inst (when it exists). ♦

Using these names, we can rewrite Equation 2.1 as:

C-Inst D-Inst

ΣF

⊥

⊥
ΠX

∆F

In short, ΣF ⊣ ∆F ⊣ ΠF . As suggested by the names in the definition, we will show that ΣF

corresponds to unions of tables while ΠF corresponds to joins.
Consider an example instance in Table 2. The schema is similar to our running example, except

ID First Last Salary
E01 Francis Poulenc $15,000
E02 George Dyson $14,500
E03 Charles Gounod $16,000
E04 Georges Bizet $24,000

ID First Last Position
F01 Georges Bizet Junior Intern
F02 Charles Gounod Associate Fax Guru
F03 Francis Poulenc Executive Vice-CEO

Table 2: An example with two tables: one containing salaries and another containing positions.

now we have one table with the employee’s salary and another with their position. We want
to combine these into one table with all of the information. Unfortunately there’s no explicit
connection between the IDs of the two tables, so we have to match data based on the employees’
first and last names. In relational terminology, we want to join these two tables along the “First”
and “Last” columns Our source and desination schema are in Figure 5.

EmpSalary

First

Last

Salary

Position

EmpPos

C

Employee

First

Last

Salary

Position

D

Figure 5: The source schema (left) and desination schema (right) for our join operation.

Our functor G : C → D will be the obvious one: we send EmpPos and EmpSalary to Employee and
everything else to “itself”: we map EmpPos → First and EmpSalary → First both to Employee →
First and likewise for Second, and so on for the other two. For our instance in Table 2, we will
compute its right Kan extension along G, i.e. its image under ΠG. We will make use of the following
theorem which tells us how to compute Kan extensions as limits and colimits:

11

Theorem 2.13 (Theorem 6.2.1 in [Rie14]). Given F : C → D and γ : C → E , if for every
D ∈ D the colimit:

LanF γ(D) := colim(F ↓ D
Πd

−−→ C γ−→ E) (2.2)
exists, then they define the left Kan extension LanF γ : D → E . Likewise for the other:

RanF γ(D) := lim(D ↓ F
Πd−−→ C γ−→ E)

defines RanF γ : D → E . ♦

This gives us an existence result about our functors:
Corollary 2.14. Let E be a category, C, D be schemas, and F : C → D a functor. If C-Inst and
D-Inst are the categories of E-valued C- and D-instances, respectively, then:

1. If E is cocomplete, the union functor ΣF : C-Inst → D-Inst exists.

2. If E is complete, the join functor ΠF : C-Inst → D-Inst exists. ♦

We recall some definitions needed for the theorem:
Definition 2.15. Let F : C → D and G : E → D be functors. The comma category of F and G,
denoted F ↓ G, has:

• Objects the triples (C, E, h) for C ∈ Ob C, E ∈ Ob E , and h : FC → GE a morphism in D;

• Morphisms (C, E, h) → (C ′, E′, h′) the pairs (f, g) for f : C → C ′ a morphism in C and
g : E → E′ a morphism in E such that the following commutes:

FC FC ′

GE GE′

F f

h h′

Gg

♦

We have projection functors Πd : F ↓ G → C given by Πd(C, E, h) := C and Πd(f, g) := f and
likewise Πd : F ↓ G → E for the second coordinate.

Thus, the functor on the right hand side of Equation 2.2 is explicitly:

D ↓ F
Πd−−→ C γ−→ Set

(X, h : D → FX) 7→ γ(X) ∈ Set
(f : X → X ′) 7→ (γ(f) : γ(X) → γ(X ′))

For our case, we will use the following formula giving a limit as an equalizer of products, which is
easy to compute in Set:
Theorem 2.16 (Theorem 3.2.13 in [Rie14]). The limit of γ : C → Set may be computed as
the equalizer:

lim γ
∏

X∈Ob C γX
∏

f∈Mor C γ(cod f)
c

d

where

c := ⟨πcod f ⟩f∈Mor C

d := ⟨γf ◦ πdom f ⟩f∈Mor C ♦

12

For the computation, we will use the schemas in Figure 6; the only change is the names of the
objects.

E

F

L

S

P

E’

C

E”

F”

L”

S”

P”

D

Figure 6: The revised source schema (left) and destination schema (right) for our join operation
(c.f. Figure 5). All objects have been renamed for brevity but the schemas are otherwise identical.

Call our instance I : C → Set. For each object of our destination schema D ∈ D, we need to
compute the limit of the functor:

D ↓ G
Πd−−→ C I−→ Set

which, by Theorem 2.16, will require us to compute the following two products:∏
X∈Ob(D↓G)

I(X),
∏

f∈Mor(D↓G)
I(cod f)

We will only compute this for E′′, the table of IDs in our destination schema; using the specific
definition of the limit in Theorem 2.16, this will tell us all of the data. First, we must compute the
slice category E′′ ↓ G, whose objects may be identified with the functions E′′ → GX for X ∈ Ob C,
our source category; these are:

idE′′ : E′′ → GE = E′′

idE′′ : E′′ → GE′ = E′′

E′′ → GF

E′′ → GL

E′′ → GP

E′′ → GS

so our first product is:∏
X∈Ob(D↓G)

I(X) = I(E) × I(E′) × I(F) × I(L) × I(P) × I(S)

The morphisms in our category X → Y are the precisely the morphisms X → Y in C; the commu-
tativity condition is degenerate in our case since there is at most one morphism between any two

13

objects. These are:

E → E E′ → E′

E → F E′ → F

E → L E′ → L

E → P E′ → S

so our second product has eight terms:∏
f∈Mor(D↓G)

I(cod f) = I(E) × I(F) × I(L) × I(P) × I(E′) × I(F) × I(L) × I(S)

The function c in Theorem 2.16 between the two is:

c(e, e′, f, l, p, s′) 7→ (e, f, l, p, e′, f, l, s)

and the function d is:

d(e, e′, f, l, p, s) 7→ (e, F (e), L(e), P (e), e′, F (e′), L(e′), S(e′))

where F (e) is the first name of an employee (i.e. (I(E → F))(e)), F (e′) is the other first name
(I(E′ → F))(e′), and so forth. The equalizer of the two functions c, d is the subset:{

(e, e′, f, l, p, s) : f = F (e) = F (e′), l = L(e) = L(e′), p = P (e), s = S(e′)
}

(2.3)

which we can write as the table in Table 3. In that representation we’ve counted the first two
columns as the “ID” column, but using our computation the actual set of IDs would be as in
Equation 2.3, i.e. an element of a product. Notice that we lost all of the rows that didn’t have an
entry with a matching First and Last name in both tables. This offers a proof-by-example that the

ID1 ID2 First Last Salary Position
E01 F03 Francis Poulenc $15,000 Executive Vice-CEO
E03 F02 Charles Gounod $16,000 Associate Fax Guru
E04 F01 Georges Bizet $24,000 Junior Intern

Table 3: The result of our join of the two tables in Table 2 along First and Last.

Π operator handles joins of tables.
Our last operator, Σ, is dual: it handles unions of tables. We can run the same computation
to see what ΣG does by dualizing Theorem 2.16, since the colimit of G : C → D is the limit of
Gop : Cop → Dop:

Theorem 2.17. The colimit of γ : C → Set may be computed as the coequalizer:
⊔

f∈Mor C γ(dom f) ⊔
X∈Ob C γ(X) colim γ

c

d

where

c := ⟨ιdom f ⟩f∈Mor C

d := ⟨ιcod f ◦ γf⟩f∈Mor C ♦

14

We are working with the other comma category G ↓ E′′, which has two objects:

GE → E′′ GE′ → E′′

and only the identity morphisms, since there are no morphisms E → E′ or E′ → E in C. Our left
coproduct is:

I(E) ⊔ I(E′)

The right:
I(E) ⊔ I(E′)

The function c is the identity, and so is d. In this case, our resulting table is the disjoint union of
the two, given in Table 4. In the join case, we used the most information possible from the “along
First and Last” part of the join: we merged the pairs of rows, one from each table, that had the
same first and last name. In the union case, we used the least information possible: the resulting
table has as columns the unions of the columns in the two tables, taking from “along First and
Last” to mean only that we must identify the two First and Last columns.

ID1 ID2 First Last Salary Position
E01 – Francis Poulenc $15,000 –
E02 – George Dyson $14,500 –
E03 – Charles Gounod $16,000 –
E04 – Georges Bizet $24,000 –
– F01 Georges Bizet – Junior Intern
– F02 Charles Gounod – Associate Fax Guru
– F03 Francis Poulenc – Executive Vice-CEO

Table 4: The result of our union of the two tables in Table 2 along First and Last.

Thus, by these examples we observe that this theory of data migration at least subsumes the notion
of data migration from relational algebra. Given a functor F : C → D between schemas, we have
three very natural ways of migrating instances between schemas: precomposition ∆F : D-Inst →
C-Inst, right Kan extension ΠF : C-Inst → D-Inst, and left Kan extension ΣF : C-Inst → D-Inst.
These correspond to the three fundamental notions of relational algebra: projection, join, and union,
respectively.

2.4 The Problem

There is a problem with this approach; we danced around it in our computations of examples of
data migration. We define ΠF and ΣF for some functor F : C → D using limits and colimits,
respectively. In our computation, we used the specific equation for a limit given in Theorem 2.16.
However, a limit is only defined up to isomorphism: in Set, this means that when we compute a
limit, any other set of the same cardinality will suffice.
It turns out that for databases Theorem 2.16 gives us a very nice limit object, but theoretically
speaking the resulting limit could have nothing to do with our input data. This is not a problem
for ID columns like Employee in our example: we don’t really care what the IDs are, so long as
they’re unique. However, it does ruin our attribute columns, like First: the resulting set of first
names in our migrated instance doesn’t need to be a subset or superset of our original set, or even

15

ID1 ID2 First Last Salary Position
A05 G03 Sheridan 3:00 PM EST ⋆⋆⋆⋆ Y O S H I
E19 E02 Limited Network Connectivity Forty-seven
E22 G01 Apples ⊔ Paris According to all known laws of aviation, there is no way that a bee should be able to fly

Table 5: Another possible result of our join of the two tables in Table 2 along First and Last.

have any elements in common. For example, the result of our join operation could be given by
Table 5 instead of Table 3.
This leads us to consider a different approach, moving the attribute columns from our schema
category into a separate category in Section 3. We will have the same fundamental data migration
operations that are defined in much the same way, but we will need to place some more conditions
on the schemas to ensure that they always exist.

2.5 A Diversion to Monads

Monads are ubiquitous in category theory and computer science, though in applications they are
not often called monads, nor is their full structure often used. Using our theory of databases
as categories and instances as functors, we can use monads to represent certain special types of
databases. This section is explored in greater detail in [Spi12b].
The main example for this section will be fuzzy databases. It is very difficult to pin down a
single definition for a fuzzy database, and all implementations found by the author (or proposed
implementations) make use of conventional databases with multiple columns representing each
attribute (e.g. [GUP05]). The one we will be using is the following, which is not too helpful for
implementation but generalizes all of the definitions the author has seen:

Definition 2.18. A fuzzy database is a database in which every relation and attribute gives a
probability distribution on the possible values of that relation/attribute, instead of simply a value.♦

The idea is that this type of database can store “fuzzy” information: we may know that a person’s
height is between 6’ and 6’6”, or that they live within 5km of the Bahen building, or that they’re
most likely married to Susan but might be married to Karen. We can represent all of these cases
using the above definition: for height, the set of values would be the positive real numbers (perhaps
up to 10’) and we may represent “between 6’ and 6’6”” by assigning to it a uniform distribution
on [6, 6.5]. By changing our definition of database instances to include a certain construction using
monads, we can implement these fuzzy databases as well as other exotic instances.
First, we give the basic definitions.

Definition 2.19. Let C be a category. A monad on C is a triple (T, µ, η) of

• A (covariant) endofunctor T : C → C;

• A natural transformation µ : T 2 ⇒ T called multiplication;

• A natural transformation η : idC ⇒ T called the unit transformation

16

such that µ is associative; for each A ∈ C:

T 3A T 2A

T 2A TA

T µA

µT A µA

µA

and η and µ are compatible; for each A ∈ C:

TA T 2A

T 2A TA

ηT A

T ηA µA

µA

♦

Examples abound: every adjunction F : C ⇆ D : U with F ⊣ U (F left adjoint to G) induces a
monad on C via U ◦ F : C → C, with the unit of the adjunction being the unit of the monad, and if
ε : F ◦ U ⇒ idD is the counit then UεF : UF ◦ UF ⇒ UF is the multiplication. In particular, any
“free” object in algebra gives a monad on Set:

• For a fixed ring R, the free R-module on a set, specializing to the free vector space and free
abelian group.

• The free group on a set.

• The free monoid on a set.

• etc.

These are a bit abstract; we will discuss in some detail two examples used in computer science, the
list monad and the maybe monad.
The list monad is another name for the free monoid monad: it is a functor L : Set → Set that maps
each set to the set consisting of finite lists of elements from that set, i.e.:

L(X) := {(x1, . . . , xn) : n ∈ Z≥0, xi ∈ X}

We will write [X] := L(X), which is the notation used in e.g. Haskell for lists. This functor acts
on functions f : X → Y in the obvious way: to get a function [f] : [X] → [Y] we apply f to each
entry of the input list. This is precisely the map function present in many programming languages.
The “multiplication” operation µ : [[X]] → [X] is list concatenation: [[X]] is the set of lists of [lists
of elements of X], and to get a list of elements of X we concatenate all lists in the input list of lists.
The “unit” transformation µ : X → [X] maps an element x ∈ X to the singleton list [x] containing
just x. The compatibility criterion is easily checked, or is immediate by observing that this comes
from the adjunction Set → Mon mapping a set to its free monoid.
The maybe monad can be used for exception handling; it can also be used to implement the null
coalescing operator “.?” present in some languages, e.g. C#. This is the functor M : Set → Set
that maps each set to itself with a disjoint basepoint added:

M(X) := X ⊔ {∗}

17

The action on functions f : X → Y is defined by setting Mf(x) := f(x) for all x ∈ X and
Mf(∗) := ∗, preserving the basepoints. The multiplication operator identifies the two basepoints:

µ((X ⊔ {∗}) ⊔ {∗}) := X ⊔ {∗}

i.e. we map both basepoints in our input to the same basepoint in the output. The unit operator
X → X ⊔ {∗} is the evident inclusion. This is helpful for programming since we can chain together
functions that might return a value, or might fail; if they succeed, we keep going down the chain,
passing the output along, but if they fail we stop immediately. We can extend this to add any finite
number of basepoints to the set to represent an arbitrary number of distinct exceptions or failure
states.
For our case, the most important monad will be the Giry monad (or one of its variants). We will
need a definition:
Definition 2.20. Let X be a set and p : X → [0, 1] a probability distribution on X, i.e. a function
such that ∑

x∈X p(x) = 1. We call p finitary if p(x) ̸= 0 for only finitely many x ∈ X. The support
of p, denoted supp p, is the subset of X on which p is nonzero:

supp p := {x ∈ X : p(x) ̸= 0} ♦

We define the (finitary, Set-valued) Giry monad G : Set → Set as follows: we map a set X to the
set of finite probability distributions on X and on a function f : X → Y to be the function sending:

G(f) : GX → GY

G(f)(p : X → [0, 1]) : Y → [0, 1]
G(f)(p)(y) :=

∑
x∈f−1(y)

p(x)

The multiplication is given by the weighted sum:

µX : G(GX) → GX

(µX(f : GX → [0, 1]))(x) :=
∑

p∈supp f

f(p) · p(x)

The unit is given by the Kronecker delta, i.e.:

ηX : X → GX

ηX(x) : X → [0, 1]

(ηX(x))(y) :=
{

1 if y = x

0 otherwise

The usual Giry monad is the monad G : Meas → Meas defined on the category of measurable
spaces and measurable functions which sends a measurable space (X, M) (we will typically omit
the σ-algebra M ⊆ P(X) from the notation) to the set of all probability measures on that space
with the σ-algebra generated by the evaluation maps evU : G(X) → [0, 1] given by evaluating a
probability measure on the measurable subset U ⊆ X for all U ∈ M. The action on functions is:

G(f) : G(X, M) → G(Y, M′)
G(f)(p) : M′ → [0, 1]

(G(f)(p))(U) :=
ˆ

f−1(U)
dp

18

The multiplication is:

µX : G(GX) → GX

µX(p) : M → [0, 1]

µX(p)(U) :=
ˆ

q∈GX
evU (q) dp

and the unit is given by the Dirac measure (point mass):

ηX : X → GX

ηX(x) : M → [0, 1]

(ηX(x))(U) :=
{

1 if x ∈ U

0 otherwise

How do we connect this to databases? Our motivating example is that of fuzzy databases, so we
want to have our attributes to be probability distributions over the possible values. The solution
is the Kleisli category:

Definition 2.21. Let (T, µ, η) be a monad on a category C. The Kleisli category of T , denoted
KI(T), has

• as objects the objects of C;

• as morphisms A → B the morphisms A → TB in C

with composition of two morphisms f : A → B (really f : A → TB) and g : B → C (really
g : B → TC) given by the composite

A TB T 2C TC
f T g µ

The identity morphisms are the components of the unit map η : idC ⇒ T . ♦

Thus, instead of considering Set-instances I : C → Set, we should instead consider Kleisli instances
I : C → KI(T) for some fixed monad T .

Definition 2.22. Let T : D → D be a monad and C a database schema. A Kleisli T -instance of
C is a functor C → KI(T). ♦

In the case of fuzzy databases, what is an instance I : C → KI(G), where G : Set → Set is the
finitary Giry monad? The objects of KI(G) are the same as the objects of the (co)domain of G, so
for each attribute in our schema we still get a set. However, the morphisms X → Y in KI(G) are
instead morphisms X → GY in Set; that is, instead of getting a function If : IX → IY , we instead
get a function If : IX → G(IY), i.e. for each attribute we get a finitary probability distribution
on the possible values, as we wanted.
This doesn’t quite implement our example: for example, we couldn’t represent a continuous range
like [6, 6.5] as a uniform probability distribution since we need to give finitary probability distri-
butions. The two solutions are either to switch to discrete values (necessary for implementation
anyways) or to use the full Giry monad G : Meas → Meas (perhaps helpful for theoretical purposes).

19

What does functoriality of I : C → KI(G) mean? This is answered by considering composition in
the Kleisli category. This will be different for every monad, but for the Giry monad this means
that our compositions must respect conditional probabilities. The composition is unenlightening
to write down generally, but consider the following specific example; each column is a different set
and we define functions f : A → B and g : B → C using the arrows labeled with probabilities:

A B C

a a′ a′′

b′, b′′

f g

0.6

0.4

0.3
0.7

0.2
0.8

The probability of a′′ given a should be

P(a′′|a) = 0.6 · 0.3 + 0.4 · 0.2 = 0.26

and this is precisely what composition is in the Kleisli category: we have (g ◦ f)(a)(a′′) = 0.26.
Thus, a valid database instance I : C → KI(G) (i.e. one that is actually a functor) would be required
to respect conditional probabilities in this fashion.
The other monads offer similar functionality: the maybe monad allows us to have “labelled null”
values, i.e. we can set certain attributes to be a globally-identifiable “null” value (the basepoint) if
we have no data for that entry. The list monad allows us to take as values lists of values, instead
of single values.
The data migration functors can certainly be extended to this notion of instances: they were defined
for instances valued in arbitrary categories. However, Kleisli categories in general fail to have many
limits and colimits; thus, we cannot appeal to e.g. Corollary 2.14 to prove the existence of the union
and join migration functors (projection always exists).
The other limitation is that we are stuck with the same monad for the entire database: if we use
the Giry monad every value must be a probability distribution, with the list monad a list, and so
on. However, this is still an interesting example of how other natural concepts in category theory
interact in interesting ways with our notion of databases.

20

3 Databases via Slice Categories

We observed in Section 2 that viewing databases as categories can be done in a natural way; our
computations in Section 2.3 showed that this perspective naturally gives rise to the fundamental
data migration operations from relational algebra. However, we ran into some problems in Sec-
tion 2.4: the notion of isomorphism in Set (up to cardinality) is too weak to properly deal with
actual data. This problem is not fatal: what if we restrict our schemas to only contain the ID
objects, and leave out the attributes?
In this case, the weak notion of isomorphism is no longer an issue: as long as the IDs are unique
and we can keep track of how they change through migrations, we don’t actually care what they
are. We only need to find a way to reintroduce attributes that will behave properly with respect
to migration.
This section will present a (small) subset of the material in [SW15].

3.1 Typed Instances

Consider again the example database with data in Table 1 and schema in Figure 1. We wish to
convert this into a category using our new perspective: we do the same as in Procedure 2.4, but
we forget about any attributes for now. This gives us the graph in Figure 7 (c.f. Figure 2).

Employee Dept

Figure 7: The new graph for the schema in Figure 1.

How do we add attributes to this? Suppose we have a schema C. A C-instance is a functor
I : C → Set, which now only gives a set of unique IDs for each object in our schema and functions
between them corresponding to the relations; for our running example, we get a set of employee
IDs and a set of department IDs. We want each employee to have a first name, last name, and a
salary and each department to have a location. Our original schema in Figure 1 also gives specific
types for each of these, i.e. sets that they must be contained in. Suppose we define a new category
A with one object for each attribute we want:

Ob A := {First, Last, Salary, Location}

The type of each attribute assigns a set to each object of this category; if we let A be a discrete
category (a category with no non-identity morphisms), then this typing gives a functor γ : A → Set
mapping First to the set of strings, Salary to the set of positive (nonnegative?) real numbers, and
so forth. We also have a natural functor i : A → C assigning each attribute to its entity: First,
Last, and Salary are mapped to Employee and Location is mapped to Dept (since A is discrete, it
suffices to define these functors only on the objects of A, since functoriality tells us where to send
identities). We now have the following situation; the diagram need not commute:

A C

Set

i

γ

I

21

We’ve captured all of the information given in the schema in Figure 1 using the pair of functors
γ : A → Set (types of attributes) and i : A → C (assigning attributes to entities). All that remains
is to add attributes to our instance I : C → Set. This is done by specifying a natural transformation
α : I ◦ i ⇒ γ:

A C

Set

i

γ I
α

What does this give us? For each object x ∈ A, we get a function from (I ◦ i)(a) → γ(a), so for each
attribute x ∈ A we get a function from the set of IDs for its associated object I(i(x)) to its set of
possible values γ(x). If E := I(Employee) is our set of employee IDs, then (I ◦ i)(First) = E so we
get a function from E to the set of strings which maps an employee to their first name; likewise the
other attributes. Naturality of α ensures that these assignments reflect composition in our schema
C. We now revise our definition of schemas and instances to reflect this:

Definition 3.1. A schema is a category C.
Let D be a category. A D-valued typing for a schema C is a triple (A, i, γ) of a category A, called
the attribute category, and a pair of functors γ : A → D called the attribute typing and i : A → C
called the attribute assignment. We call the category C the entity category.
Let C be a schema and (A, i, γ) a D-valued typing. A typed C-instance is a functor I : C → D and
a natural transformation α : I ◦ i ⇒ γ:

A C

D

i

γ I

α (3.1)

Note that the diagram need not commute. ♦

We will work with D := Set throughout.
In the definition, we could require A to be discrete as in the preceding discussion; however, allowing
A to have non-identity morphisms mean that we can have attributes that are wholly determined by
the value of other attributes (e.g. net earnings are the difference of gross earnings and expenses).
These can be added later, but putting them in the typing A ensures that they will be preserved by
any data migration; we will explore this further in Section 4.
We wish to form a category C-Inst of typed instances as we did with untyped instances; what is
the correct notion of “morphism” of typed instances? If we rotate the diagram in Equation 3.1 a
bit:

A Set

C

γ

i
α

I

This looks like something related to a Kan extension, Definition 2.9: it says that (I, α) is a right

22

solution to the lifting problem:
A Set

C

γ

i

∃? (3.2)

So we can equivalently define an instance to be a right solution to this lifting problem. The
advantage of this is that we have a natural notion of a category of instances: the slice category of
SetC (or our original C-Inst) over the right Kan extension Rani γ : C → Set. We give the definition
of the slice category; recall the comma category, Definition 2.15.
Definition 3.2. Let C be a category and X ∈ Ob C. View X as the constant functor X : 1 → C
where 1 is the category with one object and one morphism, which are sent to X. We call the comma
category idC ↓ X the slice category of C over X and denote it by C/X. Removing redundant terms,
it has:

• Objects the pairs (Y, h) for Y ∈ Ob C and h : Y → X a morphism in C;

• Morphisms (Y, h) → (Y ′, h′) the morphisms f : Y → Y ′ in C such that the following com-
mutes:

Y Y ′

X

f

h

h′

Likewise, we have a slice category of C under X given by X/C := X ↓ idC . ♦

Let η : Rani γ ◦ i ⇒ γ be the universal natural transformation of the right Kan extension. The
universal property of the right Kan extension says that giving a right solution (I, α) to our lifting
problem in Equation 3.2 is the same as giving a functor IC → Set and a natural transformation
α′ : I ⇒ Rani γ, since every natural transformation α : I ◦ i ⇒ γ factors uniquely through
η : Rani γ ◦ i ⇒ γ. We now have a candidate category for the category of typed instances:
C-Inst/ Rani γ. What are the morphisms in this category? Explicitly, a morphism I → I ′ (for
(I, α) and (I ′, α′) ∈ C-Inst/ Rani γ) is a natural transformation f : I ⇒ I ′ such that

I I ′

Rani γ

f

α

α′

By the universal property of the right Kan extension, this is equivalent to, if we replace α with η ·α
and α′ with η · α′:

I ◦ i I ′ ◦ i

γ

f ·id

α

α′

which means a natural transformation f : I ⇒ I ′ such that for each x ∈ A and y ∈ I(a) we have

αa(y) = (α′
a ◦ fi(a))(y)

so f preserves the attributes, i.e. cannot change any attributes of any rows. We define:

23

Definition 3.3. Let C be a schema and (A, i, γ) a typing. The category of typed C-instances,
denoted C-Inst, is the category with

• Objects the typed C-instances, i.e. pairs I : C → D and α : I ◦ i ⇒ γ;

• Morphisms the typed homomorphisms, the natural transformations f : I ⇒ I ′ that preserve
attributes. ♦

Lemma 3.4. C-Inst is isomorphic to the slice category DC/ Rani γ = C-Inst/Πiγ. ♦

Proof. Right solutions I : C → D and α : I ◦ i ⇒ γ are in bijection with pairs I : C → D and
α : I ⇒ Rani γ by the universal property of Rani γ. □

3.2 A Primer on Pasting Diagrams

We will need to deal extensively with natural transformations when extending data migration to
typed instances; it will be helpful to draw pasting diagrams.
A pasting diagram is a commutative diagram of natural transformations; that is, a diagram with
nodes representing categories, arrows between nodes representing functors, and arrows between
arrows representing natural transformations. These diagrams need not commute when the natural
transformations are removed, but any compositions of natural transformations will commute. For
example, the diagram:

A B E

C G F

D

γα
β

δ

(3.3)

says that all possible compositions of the natural transformations will be equal, but says nothing
about the equality of compositions of the functors.
We can compose natural transformations in two ways:

Definition 3.5. Let α : F ⇒ G and β : G ⇒ H be natural transformations for F, G, H : C → D
functors. The vertical composition of α and β, denoted β ◦α, is the natural transformation F ⇒ H:

C D

F

G

H

α

β
⇝ C D

F

H

β◦α

with components (β ◦ α)X := βX ◦ αX .

24

Let α : F ⇒ G for F, G : C → D and β : F ′ ⇒ G′ for F ′, G′ : D → E . The horizontal composition
of α and β, denoted β ∗ α, is the natural transformation F ′ ◦ F ⇒ G′ ◦ G:

C D E

F

G

α

F ′

G′

β ⇝ C E

F ′◦F

G′◦G

β∗α

whose components are given by

(β ∗ α)X := (G′αX) ◦ βF X = βGX ◦ (F ′αX) ♦

An important special case of horizontal composition is when one of the two parallel pairs of functors
are the same, e.g.:

C D EF

G

G′

β C E

G◦F

G′◦F

βF

We get the “whiskered” natural transformation β ∗ idF =: βF : G ◦ F ⇒ G′ ◦ F whose components
are, as suggested by the notation:

(βF)X := βF X

and the other case:

C D E

F

F ′

α G C E

G◦F

G◦F ′

Gα

we get the “whiskered” natural transformation idG ∗ α =: Gα : G ◦ F ⇒ G ◦ F ′ whose components
are:

(Gα)X := G(αX)

These compositions interact nicely:

Proposition 3.6 (Middle Exchange Law). In the situation:

C D E

F

F ′

F ′′

α

α′

G

G′

G′′

β

β′

we have that
(β′ ◦ β) ∗ (α′ ◦ α) = (β′ ∗ α′) ◦ (β ∗ α) ♦

This says that horizontal composition followed by vertical composition is the same thing as vertical
composition followed by horizontal composition. The result is that, given any pasting diagram,

25

we can compose natural transformations in either direction (horizontally or vertically) and end up
with the same result.
Going back to the example in Equation 3.3, one such sequence of compositions is, using e.g. AB to
refer to the unique arrow A → B:

A B E

C G F

D

γα
β

δ

⇝

A B E

C G F

D

γ
(βAC)◦(BGα)

δ

⇝

A B E

C G F

D

(GF (βAC◦BGα))◦γAB

δ

⇝

A B E

C F

D

(GF (βAC◦BGα))◦γAB◦δAC

and any other sequence of compositions would give the same result by the middle exchange law.

3.3 Typed Data Migration

We take the same approach as with schemas to extend data migration to typed schemas: use the
same procedure as before and add anything necessary to deal with typing. Here we will add the
requirement that the value categories of the schemas are the same; we will assume they are Set.
Since a typed schema is now a pair of categories with some extra functors, we should need, for
instances (C, A, i, γ) and (C′, A′, i′, γ′) a pair of functors F : C → D and G : A → A′ that fit into
our schema diagrams; this means (the following diagram commutes):

A C

Set

A′ C′

i

γ

G F

i′

γ′

This definition also makes sense categorically: observe that if we define the functor:

id × Set : CAT → CAT, C 7→ C × Set

then we can view typed Set-valued schemas as elements of the comma category id ↓ (id×Set), which
are triples (A, C, ⟨i, γ⟩ : A → C × Set) (we need to use CAT, the category of large categories, since
Set ̸∈ Cat). The morphisms in this comma category are precisely the pairs (G : A → A′, F : C → C′)
such that

A A′

C × Set C′ × Set

G

⟨i,γ⟩ ⟨i′,γ′⟩

F ×id

26

which, unraveling the products, corresponds precisely to the diagram in Equation 3.3. We will
name this:

Definition 3.7. The category of Set-valued schemas, denoted SetSchemas, is the comma category
id ↓ (id × Set). ♦

Definition 3.8. Let (C, A, i, γ) and (C′, A′, i′, γ′). A typed schema morphism is a pair (F, F0) of
functors F : C → C′ and F0 : A → A′ such that the following commutes:

A C

Set

A′ C′

i

γ

F0 F

i′

γ′

♦

The existence of the various data migration functors is harder now: given F : C → D and G : A →
A′, we can no longer start simply with precomposition ∆F := F ∗ : D-Inst → C-Inst; we must
instead define some new functor ∆F,G : C′-Inst → C-Inst. We refer directly to [SW15] for sufficient
conditions; throughout, (F, F0) is a typed schema morphism (C, A, i, γ) → (C′, A′, i′, γ′).

Proposition 3.9 (Proposition 9.1.7 in [SW15]). The pullback functor ∆F : C′-Inst → C-Inst
of untyped instances extends to a functor of typed instances

∆F : C′-Inst → C-Inst ♦

Proof. Suppose we have a C′ instance I ′ : C′ → Set, α′ : I ′ ◦ i′ ⇒ γ′. We are in the following
situation:

A C

Set

A′ C′

i

F0

γ

α

F

I

i′

γ′

α′
I′

(3.4)

We need to define I : C → C′ and α : I ◦ i ⇒ γ. We define I := ∆F I ′ = I ′ ◦ F to be the usual
precomposition. The natural transformation α : ∆iI ⇒ γ is the composite:

∆iI = ∆i∆F I ′ = ∆F0∆i′I ′ α′
F0===⇒ ∆F0γ′ = γ

That is, the composite of the bottom three natural transformations (two of which are identies) in
Equation 3.4. □

Corollary 3.10. The above defines a contravariant functor ∆ : SetSchemas → Cat with

C 7→ C-Inst
F : C → C′ 7→ ∆F : C′-Inst → C-Inst ♦

27

We need more for the join operator:

Definition 3.11. Let F = (F, F0) be a typed schema morphism (C, A, i, γ) → (C′, A′, i′, γ′). We
call F join-ready if A = A′, γ = γ′, and F0 is the identity idA : A → A. ♦

This means that these join-ready morphisms cannot remove, add, re-type, or otherwise mess with
the attributes in our attribute category. This seems like a restriction, but we will recover the
generality using compositions of the various data migration functors.
As suggested by the name:

Proposition 3.12 (Proposition 9.1.10 in [SW15]). Let F be a join-ready typed schema mor-
phism (C, A, i, γ) → (C, A, i′, γ). Then the join functor ΠF : C-Inst → C′-Inst of untyped instances
extends to a functor of typed instances

ΠF : C-Inst → C′-Inst ♦

Proof. Suppose we have a C instance I : C → Set, α : I ◦ i ⇒ γ. Since the attribute categories are
the same, we are in the following situation:

C

A Set

C′

F

I

γ

i

i′
I′

α

α′

We want an extension, so we set I ′ := ΠF I. This gives us a natural transformation η : ∆F ΠF I ⇒ I,
and we set α′ : ∆i′ΠF I to be the composite:

∆i′ΠF I = ∆i∆F ΠF I
∆iη===⇒ ∆iI

α=⇒ γ

That is, the composite of the two upper natural transformations in:

C

A Set

C′

F

I

γ

i

i′
I′

α

α′ η

□

Observe also that η : ∆F ΠF I ⇒ I is the I-th component of the counit ∆F ΠF ⇒ id of the adjunction
∆F ⊣ ΠF . This is nearly a functor:

28

Corollary 3.13. Let ΠSetSchemas denote the subcategory of SetSchemas with morphisms the join-
ready typed signature morphisms. The above defines a covariant pseudofunctor Π : ΠSetSchemas →
Cat with

C 7→ C-Inst
F : C → C′ 7→ ΠF : C-Inst → C′-Inst ♦

Proof. Composition of left Kan extensions is associative up to natural isomorphism. □

Unions require more complicated conditions:

Definition 3.14. Let C, D be categories. A functor F : C → D is a discrete opfibration if for each
X ∈ C and g : Y → Y ′ for Y, Y ′ ∈ D with F (X) = Y there is a unique morphism g : X → X ′ in C
for some X ′ ∈ C such that F (g) = g. ♦

This is almost like a path-lifting condition from algebraic topology; if 2 is the category with two
objects and one arrow and 1 is the category with one object and no non-identity arrows, this says
for each pair of functors g : 2 → D (i.e. each morphism g ∈ Mor D) and X : 1 → D (i.e. each object
X ∈ Ob C) such that g ◦ dom = F ◦ X (the domain of g is F (X)) we have a unique lift:

C

1 2 D

F

dom

X

f

∃!

That is, for each lift of the starting point (domain) of the path (morphism) g : Y → Y ′ in D we
have a unique lift to a path (morphism) in C starting at the given point (object).

Definition 3.15. Let F = (F, F0) be a typed schema morphism (C, A, i, γ) → (C′, A′, i′, γ′). We
call F union-ready if

1. F0 is a discrete opfibration; and

2. The following is a pullback diagram:

A C

A′ C′

i

F0 F

i′

(3.5)
♦

Proposition 3.16 (Proposition 9.1.13 in [SW15]). Let F be a union-ready typed schema mor-
phism (C, A, i, γ) → (C, A′, i′, γ′). Then the union functor ΣF : C-Inst → C′-Inst of untyped
instances extends to a functor of typed instances

ΣF : C-Inst → C′-Inst ♦

29

Proof. Suppose we have a C instance I : C → Set, α : I ◦ i ⇒ γ. We are in the following situation:

A C

Set

A′ C′

i

F0

γ

α

F

I

i′

γ′

α′
I′

We define I ′ := ΣF I. To get the rest, we rely on technical lemmas from [SW15]; we have a natural
transformation ζ : ΣF0∆i ⇒ ∆i′ΣF given by

ΣF0∆i
ηF==⇒ ΣF0∆i∆F ΣF = ΣF0∆i′∆F0ΣF

εF0==⇒ ∆i′ΣF

where η : id ⇒ ∆∗Σ∗ is the unit of the adjunction ∆∗ ⊣ Σ∗ and ε : Σ∗∆∗ ⇒ id is the counit. Since
F0 : A → A′ is a discrete opfibration and the diagram in Equation 3.5 is a pullback diagram, by
Proposition 8.4.16 of [SW15] this ζ is a natural isomorphism. We compose:

∆i′ΣF I
ζ−1
==⇒ ΣF0∆iI

ΣF0 α
====⇒ ΣF0γ = ΣF0∆F0γ′ εF0==⇒ γ′ □

3.4 Parsing the Data Migration Functors

We run into a problem if we try to use the data migration functors in the obvious way. The
projection functor ∆ works exactly as expected: we needed no constraints to ensure its existence.
However, the constraints on the other functors cause more trouble. Consider our join example
in Table 2. The immediate way of translating these schemas into typed schemas might be like
Figure 8. Note that we are forced to have the exact same attributes in both schemas, since the
attribute categories must be the same. The typed morphism is the obvious one: we map EmpPos
and EmpSalary both to Employee, and the attribute functor is the identity.
We run into a problem immediately. If I is a C-instance, then the functor part of the joined instance
ΠF I : C′ → Set is defined as ΠF I: it incorporates none of our typing data! The resulting object
will simply be the product of the two ID columns, ignoring any attributes that are the same.
However, if we have a database like our first example in Table 1, we could certainly remove one of
the two foreign keys between them and join them based on the remaining one; by the computations
for untyped tables, this would give us the expected result.
We need another way of translating schemas into typed schemas to have a meaningful way of joining
tables; we will first consider the method proposed in [SW15]. Instead of assigning attributes directly
to tables, we instead add a “dummy” object D, and give that object a single attribute; no other
attributes are present in our database. For each attribute we want, we add a morphism from its
object to D. For example, schema C in Figure 8 would be something like the somewhat floral
category in Figure 9.

30

EmpSalaryLast

First

Salary

Last’

Position

First’

EmpPos

C Employee
Last

First’

First

Last’

Salary

Position

C ′

Figure 8: Our first attempt at a typed source schema (left) and desination schema (right) for our
join operation. Filled nodes are elements of the foreign key category, hollow nodes are attributes,
and lines from filled to hollow give attribute assignments.

EmpPos

D

EmpSalary

A

First

PositionLast Sa
lar

y

Firs
tLast

C

Figure 9: One approach to fixing unions and joins along attributes; c.f. Figure 8.

We still have an attribute for each distinct morphism into D: for each instance I : C → Set,
α : i ◦ I ⇒ γ, the morphism of sets will assign to each column of each row of the tables an ID in
D, and the natural transformation will give the values to each attribute. We join along attributes
by identifying morphisms in our functors; since all of our schemas only have one attribute (A), the
condition for the existence of the join functor is always satsified.
Nonetheless, this approach itself is nonetheless unsatisfying: we have essentially removed the at-
tribute category from the equation, which means we no longer have a categorical way of asserting
that different attributes have different types (all attributes must take values in the same set, the
type of the only attribute). Another approach is to “merge” the attribute category with the schema:

Definition 3.17. Let C = (C, A, i, γ) be a typed schema with A discrete. The merged typed

31

schema, denoted [C], is the typed schema ([C], A, [i], γ) with:

• Schema category [C] the category with:

– Objects the disjoint union Ob C ⊔ Ob A;
– Morphisms generated by the morphisms of C, freely adjoined with a unique morphism

i(a) → a for each a ∈ A.

• Attribute category the same category A;

• Attribute mapping [i] : A → [C] given by [i](a) := a, viewing the right a as a ∈ Ob[C]

• Attribute typing the same functor γ. ♦

This is easily understood by example; see Figure 10. The idea behind this is to return to our
original approach of converting schemas into categories, while using the attribute category A to
“pick out” all of the objects which are concrete: those objects whose only importance is the value
under the natural transformation α : I ◦ i ⇒ γ, not the value under the functor I : C → Set.

EmpSalaryLast

First

Salary

Last

First

Salary

Last’

Position

First’

Last’

Position

First’

EmpPos

[C]

Figure 10: Another approach to joins along attributes using “merged” schemas; c.f. Figure 8.

We can use our data migration operations to transfer between these schemas: we can define a
functor q : [C] → C that maps all of the objects from A back to the object in C they are assigned
to; explicitly:

q(X) :=
{

X if X ∈ C
i(X) if X ∈ A

This gives a typed schema morphism:

C

A

[C]

i

[i]
q

so we can use the functor ∆q to transform a C-instance into a [C]-instance. Explicitly, given a
C-instance I : C → Set, for a ∈ A we have I(a) = I(i(a)), so each new object is a copy of the object
it was assigned to by i.

32

This functor has a left inverse Q:1 intuitively, we compose along the natural inclusion ι : C ↪→ [C];
however, this inclusion doesn’t give a typed schema morphism (attributes are moved). Explicitly,
given an instance I : [C] → Set, α : I ◦ [i] ⇒ γ we get an instance I : C → Set, α : I ◦ i ⇒ γ by
setting I := I ◦ ι and αa := αa ◦ I(i(a) → a).
Suppose we want to join the schema C in Figure 8 along First and Last. We proceed in a few steps.
First, form the merged schema [C] in Figure 10. We move C instances to this schema using ∆q.

EmpSalaryLast
First

SalaryLast

First

Salary

EmpPos

Position Position

E

Figure 11: The category derived from Figure 10 by merging the First and Last objects.

Second, merge the attributes to be joined on and form a new schema: in our case, we merge [First
and First’] and [Last and Last’] to get the schema E in Figure 11. We then move an instance
from [C] to E by taking the union ΣF along the natural projection F : [C] → E (since E is really a
quotient of [C]). One may verify that this projection and the associated projection between the two
attribute categories satisfy the conditions of Proposition 3.16. The effect of this step is to merge
the [First and First’] columns (and likewise the other) into one object.
Third, “dedupe” the attributes to be joined on. In taking this “merged schema” approach, we are
converting attributes into foreign keys and joining along these new foreign keys. We know that
these foreign keys should be entirely determined by their value under the natural transformation:
that is, we should identify those elements of (ΣF ◦∆q ◦I)(First) that correspond to the same actual
value, and likewise for Last. We do this by defining a new map2 D taking an instance I, α to the
“deduped” instance along First and Last; more generally, if a ⊆ A is a subset of attributes, we
define Da as:

DaI(X) :=
{

I(X) if X ̸∈ i(a)
Im αa if X = i(a), a ∈ a

and on the interesting morphisms:

DaI(Y → i(a)) := αa ◦ I(Y → i(a))

The effect is to identify any elements of the given concrete columns (i.e. meaningless IDs) that have
the same actual value.
Fourth, conduct the actual join: define the destination schema C′, form the merged schema [C′] (in
Figure 12), and conduct the join along the natural functor G : E → C′, given by ΠG.
Finally, use the functor Q to return to the unmerged schema C′ (in Figure 13).

1The author suspects that this functor is Q = Πq = Σq.
2This map can likely be extended to a functor in the evident way.

33

Employee Last

First

Salary

Position

Last

First

Salary

Position

[C ′]

Figure 12: The final merged category in our join; the original category is in Figure 13.

Employee Last

First

Salary

Position

C ′

Figure 13: The final category in our join.

Applying this rather lengthy procedure to our example instance in Table 2 gives us exactly what
we originally wanted: the instance given in Table 3. This time, due to the added structure of
the natural transformations and the conditions placed on functors, that is the only possible result
(excepting changes in ID values).
We can use a similar procedure to use the approach in [SW15] (i.e. the revised schema in Figure 9):
convert ordinary schemas to the “floral” form, do the operations along attributes, and convert back.
If the desired operations “respect” the typing of the attributes, the loss of typing in the intermediate
stages can be undone at the end; however, the method outlined here of merged categories maintains
the typing information the entire way through.

3.5 Smaller Problems

This theory of databases is significantly developed in [SW15]; it shows that many data migrations
can be represented as a composition of a join, a union, and a projection, and (using the construction
in Figure 9) proves that this theory implements any operations possible in conventional relational
algebra. It also discusses in detail the semantics and implementation of various queries that can be

34

conducted using this construction. There is an implementation of this perspective as a computer
program called FQL: it has been superseded by CQL (at [cql]), but can be found at [SSW].
This perspective of databases fixes the problems outlined in Section 2.4: joins and unions are forced
to behave properly, and we can also enforce data types for each attribute. Nonetheless, this method
has obvious pitfalls; namely, the difficulty in constructing the data migration functors. We needed
to apply certain conditions to our functors between schemas in order to ensure their existence and
their proper behaviour. We also worked primarily with discrete attribute categories: this means
that we can add path equivalences for foreign keys, but not for attributes; it would be advantageous
to be able to constrain attributes as well. The final development explored in this paper, profunctors,
addresses these issues.

35

4 Databases via Algebraic Profunctors

We can use a concept called “profunctors” to fix the deficiencies of typed databases; in this section,
we sketch out the basic constructions in [SSVW16].
The idea of a profunctor is to generalize functors, just as relations between sets generalize functions
between sets; some literature calls profunctors “distributors” in analogy with this relation. This
generalization is discussed in detail in Appendix A, in which composition of profunctors is also
discussed and justified.

4.1 Profunctors and Algebraic Theories

The definition of a profunctor is rather simple:

Definition 4.1. Let A and B be categories. A profunctor from A to B, denoted F : A −7−→ B, is a
functor F : Aop × B → Set. ♦

The algebraic literature typically reverses the order, i.e. a profunctor from A to B is a functor
Bop × A → Set; this difference is explained in Appendix A and is relevant only to the intuition.
The second piece of this view, the “algebraic” part, comes from the theory of algebraic theories.

Definition 4.2. An algebraic theory is a category T with finite products and a collection ST of
base sorts such that every object in T is uniquely a finite product of elements of ST .
Given two algebraic theories T , S, a morphism of algebraic theories T → S is a finite-product-
preserving functor F : T → S such that F (t) ∈ SS for each base sort t ∈ ST , i.e. F preserves base
sorts. ♦

These algebraic theories essentially “model” a specific type of algebraic object: for example, to
represent the theory of groups using an algebraic theory T , we would have a single base sort
ST := {x}; every object of T would be a finite product of x, i.e. xn for n ≥ 0. We would also
have a binary morphism multiplication · : x × x → x, a unary morphism inversion ·−1 : x → x,
and a nullary morphism representing the identity e : () = x0 → x. The morphisms in T would
be freely generated by these morphisms, quotiented by the relations expressing associativity of
multiplication, that e : () → x is the identity, and that the product of an element with its inverse
is the identity. We can use this to define groups:

Definition 4.3. Let T be an algebraic theory. An algebra or model of T is a finite-product-
preserving functor T → Set.
Let F, G : T → Set be algebras. A T -algebra morphism F → G is a natural transformation
α : F ⇒ G.
The category of T -algebras, denoted T -Alg, is the category whose objects are T -algebras and
morphisms are T -algebra morphisms. ♦

That is, T -Alg is the full subcategory (not all objects, but all morphisms between included objects)
of SetT whose objects are the T -algebras.

Definition 4.4. Let T be an algebraic theory and C a category. An algebraic profunctor C •→ T is
a profunctor F : C −7−→ T such that for each X ∈ C, the functor F (X, −) : T → Set is a T -algebra.♦

36

4.2 Schemas as Algebraic Profunctors

We now define a schema as:

Definition 4.5. Let T be an algebraic theory. A schema is a pair (Se, S0) of a category Se, called
the entity category, and an algebraic profunctor S0 : Se •→ T , called the observables profunctor. ♦

Comparing with a typed database schema C = (C, A, i, γ), Se plays the exact same role as the entity
category C while S0 : Se •→ T replaces all of the typing data A, i, γ.
How does this describe a database schema? It will be helpful to define a specific algebraic theory,
Type. It will have three base sorts: SType := {Str, Int, Bool}. The Int sort comes with two nullary
morphisms 0, 1 : () → Int as well as addition (which lets us define 2 as 2 := +(1, 1) and likewise
n) and multiplications, modulo all the relations that we wish to hold; Bool is likewise, modeling
boolean algebra, as Str models concatenation of strings. We can add whatever operations we want
to this category: we may wish to check equality of strings or compare integers, corresponding to
morphisms = : (Str, Str) → Bool and ≤: (Int, Int) → Bool, respectively, quotiented by appropriate
relations.
The algebraic profunctor S0 : Se •→ T gives us our typing data: for each entity e ∈ Se, S0(e, −) must
be a Type-algebra, meaning for each sort {Str, Int, Bool} we are given a collection of observables
about the entity e as well as functions between these observables corresponding to the morphisms
in Se and Type. For our running example started in Table 1, the Str observables corresponding
to the entity Employee would be generated by First and Last and the Int observables would be
generated by Salary.
These would not be all of the observables: we necessarily have functions between these sets of
observables Se(Employee, Str), Se(Employee, Int), and Se(Employee, Bool) corresponding to the
various morphisms in the Type category. For example, using string concatenation, we would have
a Str observable for Employee corresponding to the concatenation of the first and last names, and
a Bool observable corresponding to whether or not their name is Joe.

4.3 Collages and Instances

How do we represent instances using this formulation? We need the concept of the collage of a
profunctor. This is defined more generally, but we will use only the instance our case of ordinary
profunctors:

Definition 4.6. Let F : C −7−→ D be a profunctor. The collage of F , denoted F̃ , is the category
with

• Objects the disjoint union Ob F̃ := Ob C ⊔ Ob D;

• Morphisms X → Y given by:

F̃ (X, Y) :=


C(X, Y) if X, Y ∈ C
F (X, Y) if X ∈ C, Y ∈ D
∅ if X ∈ D, Y ∈ C
D(X, Y) if X, Y ∈ D

37

Composition is given by composition in C, D, and functoriality of F .
We have a natural functor q : F̃ → 2 given via:

q(X) :=
{

0 if X ∈ C
1 if X ∈ D

q(f : X → Y) :=


id0 if X, Y ∈ C
id1 if X, Y ∈ D
0 → 1 if X ∈ C, Y ∈ D

and natural inclusions iC : C ↪→ F̃ , iD : D ↪→ F̃ satisfying, with 2 := {0 → 1} being the category
with two objects 0, 1 and one non-identity morphism 0 → 1:

C F̃ D

{∗} 2 {∗}

iC

q

iD

0
1

♦

This is a more general form of the “merged typed schema” construction of Definition 3.17: we merge
the two categories C and D and use the profunctor F : C −7−→ D to define morphisms between objects
of C and objects of D; functoriality of F ensures that we can compose these “straddling” morphisms
with morphisms in C and D on either end. Here the direction of the profunctor is important: we
have no morphisms from objects of D to objects of C.
We use this to define instances:

Definition 4.7. Let S := (Se, So : Se •→ T) be a schema. An S-instance is a functor I : S̃o → Set
such that the restriction It := I ◦ iT along the type inclusion preserves finite products, i.e. is a
T -algebra. ♦

What does this get us? For each entity e ∈ Se, we get a set of IDs, as usual. We also get
a T -algebra It = I ◦ iT : in the case of T := Type, this means we get a set I(Str) of things
that behave like strings, I(Int) behaving like integers, and I(Bool) behaving like booleans. We
also get functions between these sets corresponding to the morphisms in our schema: with our
running example, we get functions I(First), I(Last) : I(Employee) → I(Str), but also things like
I(FullName) : I(Employee) → I(Str) which must be equal to the concatenation of their first and
last name.
Thus, we elegantly recover the notion of typing using this construction, and more: we have access
to all of the operations we would like to use on our data types, like integer addition and string
concatenation, without having to define these explicitly in an attribute category as with typed
databases.

4.4 Data Migration

The data migration functors also arise more naturally in this context, and they exist without
restriction; we first need to define morphisms of schemas:

38

Definition 4.8. Let S, S ′ be schemas with type T . A morphism of schemas S → S ′ is a pair
(Fe, Fo) of a functor functor Fe : Se → S′

e and a natural transformation Fo : So ⇒ S′
o ◦ F op

e × id:

Sop
e × T (S′

e)op × T

Set
So

F op
o ×id

S′
o

Fo ♦

We can define the projection functor:

Definition 4.9. Let S, S ′ be schemas and F : S → S ′ a schema morphism; let F̃ : S̃o → S̃′
o be the

induced functor between the collages. Given an instance I ′ : S̃′
o → Set, we define:

∆F (I) := I ◦ F̃ ♦

In this situation, this functor actually has the necessary adjoints:

Proposition 4.10 (Propositions 7.3 and 7.4 in [SSVW16]). For any schema morphism F :
S → S ′, the functor ∆F has left and right adjoints, denoted ΣF and ΠF , respectively. ♦

4.5 Further Development

For further reading in this perspective, the reader is directed to [SSVW16]: that paper gives a
significantly more detailed treatment of the topic and excellent examples. This summary should
suffice to provide the background necessary to understand the terminology and the important points
of the proofs in Sections 6 and 7 of [SSVW16], where this theory of databases is developed.

39

5 Conclusion

In this report, we have developed three different theories for modeling relational databases using
category theory, beginning with simple functor categories and ending with algebraic profunctors.
Each interpretation arose naturally from objects already present in category theory, with little
modification necessary to accomodate practical concerns.
Category theory has already found myriad applications within pure mathematics and theoretical
computer science, but has yet to even be heard of in most practical fields. We have explored here
an example of how category theory can be applied to model a concrete concept; this example is
not isolated. Many authors have explored other beautiful applications; Fong and Spivak provide
an excellent overview of seven in [FS18] applying many concepts of category theory.
The author hopes this report not only outlines such an application, but also provides convincing
evidence that many more such applications can and will be found in the future.

40

References

[Bé00] Jean Bénabou. Distributors at work, 2000. Available at http://www.mathematik.
tu-darmstadt.de/˜streicher/FIBR/DiWo.pdf.

[CB15] Thomas Connolly and Carolyn Begg. Database Systems: A Practical Approach to
Design, Implementation, and Management. Addison Wesley, 6 edition, 2015.

[Cod70] Edgar F. Codd. A relational model of data for large shared data banks. Commun.
ACM, 13(6):377–387, jun 1970.

[cql] Categorial query language. Available at https://github.com/CategoricalData/CQL.

[FS18] Brendan Fong and David I. Spivak. An Invitation to Applied Category Theorem. Cam-
bridge University Press, 2018.

[GUP05] Jose Galindo, Angelica Urrutia, and Mario Piattini. Fuzzy Databases: Modeling,
Design, and Implementation. Idea Group, Hershey, PA, 2005.

[Rie14] Emily Riehl. Category Theory in Context. Dover, Mineola, NY, 2014. Available at
https://emilyriehl.github.io/files/context.pdf.

[Spi12a] David I. Spivak. Functorial data migration. Information and Computation, 217:31–51,
2012. Available at https://arxiv.org/abs/1009.1166.

[Spi12b] David I. Spivak. Kleisli database instances. CoRR, abs/1209.1011, 2012. Available at
http://arxiv.org/abs/1209.1011.

[Spi14] David I. Spivak. Category Theory for the Sciences. MIT Press, 2014.

[SSVW16] Patrick Schultz, David I. Spivak, Christina Vasilakopoulou, and Ryan Wisnesky. Alge-
braic databases. Theory and Applications of Categories, 32:547–619, 2016. Available at
http://www.tac.mta.ca/tac/volumes/32/16/32-16.pdf.

[SSW] Patrick Schultz, David I. Spivak, and Ryan Wisnesky. Functional query language. Avail-
able at https://github.com/CategoricalData/FQL.

[SW15] David I. Spivak and Ryan Wisnesky. Relational foundations for functorial data migra-
tion. Proceedings of the International Symposium on Database Programming Languages
(DBPL), 2015. Available at http://arxiv.org/abs/1212.5303.

41

http://www.mathematik.tu-darmstadt.de/~streicher/FIBR/DiWo.pdf
http://www.mathematik.tu-darmstadt.de/~streicher/FIBR/DiWo.pdf
https://github.com/CategoricalData/CQL
https://emilyriehl.github.io/files/context.pdf
https://arxiv.org/abs/1009.1166
http://arxiv.org/abs/1209.1011
http://www.tac.mta.ca/tac/volumes/32/16/32-16.pdf
https://github.com/CategoricalData/FQL
http://arxiv.org/abs/1212.5303

A Motivating Profunctors

The concept of a profunctor is a simultaneous generalization of two seeming unrelated concepts:
relations between sets and bimodules. This generalization is outlined in a number of papers,
e.g. [Bé00], but requires more detail to be convincing; this is the goal of this appendix.

A.1 Profunctors as Generalized Relations

We roughly follow the abstract portions of Chapter 2 in [FS18].
First, we need to view a relation between two sets A and B in the correct way. The usual way is:

Definition A.1. A relation from A to B is a subset of A × B. ♦

The more helpful way is:

Definition A.2. A relation from A to B is a function A → P(B). ♦

It is not too hard to see that these are the same thing: essentially, we assign to each element of A the
subset of B consisting of elements to which it is related. Abstractly, we use two correspondences.
The first is subsets of a set B and arbitrary functions B → 2, where 2 := {false, true} is a
two-element set. The second is the fact that Set is cartesian-closed, so we have the “currying”
correspondence:

A × B → 2 ↔ A → 2B

and we have a bijection (isomorphism) 2B ∼= P(B) by sending a subset X ⊆ B to the function
B → 2 taking the value “true” precisely on the elements of X.
Suppose we have a relation from A to B, call it R1, and a relation from B to C, call it R2. Suppose
for a ∈ A, b, b′ ∈ B, and c, c′, c′′ ∈ C we have the following relations:

A B C

b c

a b′ c′

c′′

i.e. a R1 b, a R1 b′, b R2 c, b′ R2 c′, and b′ R2 c′′. One natural way of “composing” these two
relations would be by “composing” the relations exactly as the diagram suggests, i.e. we define the

42

new relation R3 from A to C by the red arrows:

A B C

b c

a b′ c′

c′′

Formally, we would define our new relation as:

R3 := {(x, z) ∈ A × C : (x, b) ∈ R1 and (b, z) ∈ R2 for some b ∈ B}

We can generalize this further to relations on partial orders.

Definition A.3. A partial order on a set A is a subset ≤ of A × A such that the following are
satisfied for all a, b, c ∈ A:

1. Reflexivity: a ≤ a.

2. Antisymmetry: if a ≤ b and b ≤ a then a = b.

3. Transitivity: if a ≤ b and b ≤ c then a ≤ c.

For partial orders (A, ≤) and (B, ⪯), a monotone map f : A → B is a function f : A → B such
that for all a, b ∈ A, if a ≤ b then f(a) ≤ f(b).
The partial orders and monotone maps form a category Poset. ♦

Consider partial orders (A, ≤) and (B, ⪯). If A and B were just sets, a relation between them
would be an arbitrary function A → 2B; for partial orders, it makes sense to consider something
like monotone maps A → 2B. The object 2B is the collection of all monotone maps B → 2, with
f ≤ g if f(x) ≤ g(x) for all x ∈ B. We can describe this in a different way:

Definition A.4. Let (A, ≤) ∈ Poset. A subset X ⊆ A is called upward-closed if for all y ∈ A, if
x ≤ y for some x ∈ X then y ∈ X.
The collection of upward-closed subsets of A, denoted ↑ A, is:

↑ A := {X ∈ P(A) : X is upward-closed}

This has a natural partial order given by superset-containment, i.e. X ≤ Y if Y ⊆ X for X, Y ∈↑ A.
A primitive upward-closed subset of A is a set of the form

↑ a := {x ∈ A : a ≤ x}

for some a ∈ A. ♦

Lemma A.5. For (A, ≤) ∈ Poset we have 2A ∼=↑ A. ♦

43

Proof. We first define a bijection between them. Let f : A → 2 be monotone; this corresponds
uniquely to a subset F ⊆ A. We claim that F is upward-closed. Let y ∈ A with x ≤ y for some
x ∈ F . Then f(x) = true and f is monotone so f(x) ≤ f(y) and thus f(y) = true, so y ∈ F ; we do
the same to show that an upward-closed subset defines a monotone map A → 2. That these maps
are monotone is immediate from the correspondence of subsets and functions A → 2. □

Generalizing slightly:

Lemma A.6. Let A, B, C be posets. We have an isomorphism between monotone maps A×B → C
and monotone maps B → CA (where CA consists of monotone maps A → C where f ≤ g if
f(x) ≤ g(x) for all x ∈ A):

Hom(A × B, C) ∼= Hom(B, CA)
natural in both B and C, called the “currying” isomorphism. ♦

This will be seen as a special case of certain enriched categorical constructions seen in a later
section.
Now we wish to try and define relations on partial orders. Our first näıve attempt might be to
consider monotone maps A × B → 2; however, we need to be a bit more careful.
Suppose we have two posets A and B, each with two elements a ≤ a′ and b ≤ b′, respectively,
and we try to define a relation φ : A × B → 2 by declaring that a is related to b, i.e. we set
φ(a, b) := true. We are in the following situation:

A B

a b

a′ b′

We have the added structure that now we not only have a notion of horizontal composition (com-
posing a relation from A to B with one from B to C), but also a combined sort of composition of
vertical morphisms and horizontal relations: since b ≤ b′, in A × B we have (a, b) ≤ (a, b′); thus,
by monotonicity of φ we must also set φ(a, b′) := true. The trouble comes with composing in A:
suppose we instead start with defining φ(a′, b′) := true:

A B

a b

a′ b′

Then it makes sense intuitively for us to want φ(a, b′) = true, since we can get from a to a′ in A and
from a′ to b′ using the relation. However, this is not guaranteed by monotonicity: monotonicity
only says that φ(a, b′) ≤ φ(a′, b′). Thus, what we really want to do is to generalize a relation as a
monotone map Aop × B → 2, to take this into account.

Definition A.7. Let A and B be posets. A relation from A to B is a monotone map Aop×B → 2.♦

44

Via the curring isomorphism, we could equivalently talk about monotone maps B → 2Aop .

Definition A.8. Let (A, ≤) ∈ Poset. A subset X ⊆ A is called downward-closed if for all y ∈ A,
if y ≤ x for some x ∈ X then y ∈ X.
The set of downward-closed subsets of A, denotes ↓ A, is the set:

↓ A := {X ∈ P(A) : X is downward-closed}

This has a natural partial order given by subset-containment, i.e. X ≤ Y if Y ⊆ X for X, Y ∈↑ A.
A primitive downward-closed subset of A is a set of the form

↓ a := {x ∈ A : x ≤ a}

for some a ∈ A. ♦

As with upward-closed sets:

Lemma A.9. ↓ A ∼= 2Aop . ♦

Using this, we can show that our concept of a relation between posets does indeed generalize the
concept of relations on sets: for any set A, we can turn A into a discrete poset by declaring that
a ≤ b iff a = b. We also have a natural poset structure on P(A) given by subset inclusion; when a
set A becomes a poset in this fashion, we have ↓ A ∼= P(A). Thus, if B is another set then a relation
from A to B is precisely a monotone map B → P(A), which is precisely a function B → P(A) since
B is a discrete poset.
We can generalize composition in two ways: we can do it directly, or we can exploit the monadic
structure that we’ve been ignoring so far.
We viewed relations between sets A and B as functions B → P(A), and relations between posets
A and B as monotone maps B →↓ A; both the covariant power set functor P : Set → Set and the
downward-closed-subsets functor ↓: Poset → Poset form monads on their respective categories.
Consider the covariant power set functor P : Set → Set. The action on a map f : A → B is given
by the direct image:

(Pf)(X ⊆ A) := {f(x) : x ∈ X} ⊆ B

the multiplication natural transformation µ : P2 ⇒ P is given by union:

µA({Ai : i ∈ I, Ai ⊆ A}) :=
⋃
i∈I

Ai

and the unit natural transformation η : idSet ⇒ P is given by singleton sets:

ηA(a) := {a}

For ↓: Poset → Poset, the action of the functor on a monotone map f : A → B is given by smallest
downward-closed subset containing the direct image:

(↓ f)(X ⊆ A downward-closed) := {b ∈ B : b ≤ f(x) for some x ∈ X}

the multiplication natural transformation µ :↓↓⇒↓ is given by union:

µA({Ai : i ∈ I, Ai ⊆ A downward-closed}) :=
⋃
i∈I

Ai

45

observing that the result is downward-closed, and the unit natural transformation η : idPoset ⇒↓ is
given by

ηA(a) := {x ∈ A : x ≤ a}

The final observation is that composition in both cases is given by composition in the Kleisli
categories of the monads (recall Definition 2.21). The morphisms in the Kleisli category are almost
our relations: a relation from A to B (sets) is a map B → P(A) (using our convention), and likewise
for posets; to use our convention, which is natural for composing relations, we really need to work
in the opposite of the Kleisli category.
We will now compute explicitly the composition in the opposite Kleisli category of P, and show it
agrees with our original notion of composition. Suppose we have two relations: one from A to B,
f : B → P(A), and one from B to C, g : C → P(B). Then we need to compute f ◦ g in the regular
Kleisli category:

(f ◦ g)(c) : = µ((Pf)(g(c)))
= µ({f(b) : b ∈ g(c)})
=

⋃
b∈g(c)

f(b)

which is exactly what we wanted: c ∈ C is related to every a ∈ A such that a is related to some
b ∈ B (i.e. a ∈ f(b)) that is related to c (i.e. b ∈ g(c)).
Generalizing by analogy, what do we get when we compute composition in the Kleisli category for
↓? Let A, B, C be posets, f : B →↓ A a relation from A to B, and g : C →↓ B a relation from B
to C. We need to compute two things: where the composition f ◦ g sends each c ∈ C:

(f ◦ g)(c) : = µ((↓ f)(g(c)))
= µ({α ∈↓ A : α ⊆ f(b) for some b ∈ g(c)})
= {a ∈ A : a ∈ f(b) for some b ∈ g(c)}
=

⋃
b∈g(c)

f(b)

with the same interpretation as in the powerset case. Converting back to viewing a relation as a
monotone map Aop × B → 2, we can compute this explicitly:

(f ◦ g)(a, c) =
∨

b∈B

(f(a, b) ∧ g(b, c))

That is, a and c are related in the composite iff a f b and b g c for some b ∈ B, as we expected; by
the same logic, this formula also holds for the powerset.

A.2 Profunctors as Generalized Bimodules

A similar number of hoops are required to generalize bimodules in this fashion.

Definition A.10. Let S, R be rings. An (S, R)-bimodule is an abelian group M such that M is a
left S-module and a right R-module and the two actions are compatible:

1. For all s ∈ S, r ∈ R, x ∈ M we have s · (m · r) = (s · m) · r. ♦

46

We have a notion of “composing” two modules: given an (S, R)-bimodule M and an (R, T)-bimodule
N , we can form the tensor product over R:

M ⊗R N

which naturally becomes an (S, T)-bimodule; viewing the (S, R)-bimodule M as some sort of arrow
M : S −7−→ R and N as N : R −7−→ T , the result is M ⊗R N : S −7−→ T . This “composition” is not
literally associative, but is associative up to a unique isomorphism since the tensor product is a
universal object.
In this setting, “composition” is much more natural; viewing this construction in terms of functors
?×? →? is more complicated. This begins by considering the following statement:

“ ‘A monad is a monoid in the category of endofunctors, what’s the problem?’
–Philip Wadler”
–James Iry

in an even less helpful instance:

“A ring is a monoid in the category of abelian groups, what’s the problem?”
–Nobody sane

Unhelpful for an intuitive understanding of a ring, but helpful for understanding profunctors. We
need to make a brief detour into enriched category theory to understand this statement.
Definition A.11. A monoidal category is a triple (C, ⊗, I) where

• C is a category;

• ⊗ : C × C → C is a bifunctor, with ⊗(A, B) typically written as A ⊗ B;

• I ∈ C is any object, called the unit object

such that ⊗ is associative up to natural isomorphism and I is a left and right identity for ⊗ up to
natural isomorphism, subject to coherence axioms.
Specifically, we have natural isomorphisms

• α : (− ⊗ −) ⊗ − ∼= − ⊗ (− ⊗ −) called the associator;

• λ : I ⊗ − ∼= − called the left unitor;

• ρ : − ⊗ I ∼= − called the right unitor

that satisfy the “MacLane pentagon”

((A ⊗ B) ⊗ C) ⊗ D (A ⊗ B) ⊗ (C ⊗ D)

(A ⊗ (B ⊗ C)) ⊗ D A ⊗ (B ⊗ (C ⊗ D))

A ⊗ ((B ⊗ C) ⊗ D)

αA⊗B,C,D

αA,B,C⊗idD

αA,B,C⊗D

αA,B⊗C,D idA⊗αB,C,D

47

and the triangle identity

(A ⊗ I) ⊗ B A ⊗ (I ⊗ B)

A ⊗ B

αA,I,B

ρA⊗idB

idA⊗λB

♦

This is best understood through the examples:

• Cat or Set with the usual ×; the unit object is the singleton set/category, the associator
witnesses the idea that (a, (b, c)) is morally the same as ((a, b), c), and the unitors witness
that (a, ∗) and (∗, a) are morally the same as a. Even more generally, this construction works
on any category with (binary) products and a terminal object.

• The category of abelian groups Ab with the direct sum ⊕, since ⊕ is a product and the zero
group 0 is both terminal and initial.

• Ab with the tensor product of abelian groups ⊗; in this case, the unit is the integers Z.

The first two are the simplest to work with, but the last is what will help us parse the statement.
We have two equivalent descriptions of the tensor product: a universal property and a construction.
For completeness, we define the tensor product of modules; abelian groups are precisely Z-modules.

Definition A.12. Let A be a right R-module, B a left R-module, and C an abelian group. A map
φ : A × B → C is called R-balanced if for all a, a′ ∈ A, b, b′ ∈ B, and r ∈ R

1. φ(a + a′, b) = φ(a, b) + φ(a′, b);

2. φ(a, b + b′) = φ(a, b) + φ(a, b′);

3. φ(a · r, b) = φ(a, r · b). ♦

Lemma A.13. Let A be a right R-module and B a left R-module. The tensor product A ⊗R B,
unique up to unique isomorphism, is the abelian group such that for any abelian group C and
R-balanced map f : A × B → C we have a unique map:

A ⊗ B

A × B C

∃!
f

We may construct A ⊗ B as the quotient of R(A × B)/ , where R(A × B) is the free R-module on
A × B and is the smallest equivalence relation generated by the following:

• (a + a′, b) ∼ (a, b) + (a′, b);

• (a, b + b′) ∼ (a, b) + (a, b′);

• (a · r, b) ∼ (a, r · b).

48

If A is an (S, R)-bimodule and B is an (R, T)-bimodule, the tensor product A ⊗R B is naturally
an (S, T)-bimodule by considering the R-balanced maps (a, b) 7→ (s · a, b) and (a, b) 7→ (a, b · t) for
s ∈ S and t ∈ T . ♦

Corollary A.14. For a fixed (R, T)-bimodule B we have an adjunction

− ⊗R B : Mod − R⇆ Mod − S : HomR(B, −)

and likewise for left modules. ♦

Definition A.15. Let (C, ⊗, I) be a monoidal category. A monoid object in C is an object M ∈
Ob C with a multiplication morphism µ : M ⊗ M → M and an identity morphism η : I → M
satisfying

• Associativity:
(M ⊗ M) ⊗ M M ⊗ (M ⊗ M) M ⊗ M

M ⊗ M M

α

µ⊗idM

1⊗µ

µ

µ

• Unit laws:
I ⊗ M M ⊗ M M ⊗ I

M

η⊗idM

λ µ

id⊗η

ρ

A morphism of monoids (M, µ, η) → (M ′, µ′, η′) is a morphism f : M → M ′ such that f ◦ µ =
µ′ ◦ (f ⊗ f) and f ◦ η = η′. ♦

The only way to understand these definitions is to compute a few examples with favourite monoids.
We have three important examples:

• Monads on a category (C, ×) are precisely monoids in the category of endofunctors CC .

• Monoid objects in (Set, ×) are precisely the usual monoids.

• Monoid objects in (Ab, ⊗) are precisely rings. Distributivity and associativity of ring multi-
plication follows immediately from the axioms and the requirement that each induced map
x 7→ r × x and x 7→ x × r is a group homomorphism.

In all cases, the morphisms of monoids are exactly what you would suspect.
We now need the concept of an enriched category:

Definition A.16. Let (C, ⊗, I) be a monoidal category. A C-category D (or category enriched over
C) consists of

• A set of objects of D, Ob D;

• For each pair A, B ∈ Ob D a Hom-object D(A, B) ∈ Ob C;

49

• For each triple A, B, C ∈ Ob D a composition map ◦ : D(B, C)⊗D(A, B) → D(A, C) ∈ Mor C;

• For each object A ∈ Ob D a morphism idA : I → D(A, A) called the identity map

subject to coherence diagrams (associativity of ◦ and unit laws) that won’t be bothered with here.
For two C-enriched categories D and E , a C-functor F : D → E consists of

• For each object A ∈ Ob D an object FA ∈ Ob E ;

• For each pair A, B ∈ Ob D a map D(A, B) → E(FA, FB) ∈ Mor C

which respects composition and units (also diagrams that will not be bothered with). ♦

Examples abound:

• Ordinary categories are precisely (Set, ×)-enriched categories.

• Ab is Ab-enriched, since Ab(A, B) is naturally an abelian group.

• R − Mod is both Ab-enriched and R − Mod enriched.

• 2-categories are precisely (Cat, ×)-enriched categories.

One example worth going into in detail is 2-enriched categories: 2 = {false, true} becomes a
monoidal category using logical AND, ∧, with true as the unit. The axioms tell us that for
every object a we have an identity morphism true ≤ 2(a, a); this is reflexivity, since it means
a ≤ a. For every triple of objects a, b, c we have a composition map 2(b, c) ∧ 2(a, b) ≤ 2(a, c),
which is transitivity. Thus, 2-enriched categories are precisely the preoders, which are reflexive
and transitive relations (posets without antisymmetry). For 2-functors, functoriality is essentially
degenerate: it follows from transitivity of the categories and the fact that we have only zero or one
morphism in each hom-object. The fact that a functor gives us a map between the hom-objects is
precisely monotonicity, so functors correspond to monotone maps.
Specializing a bit, every poset can be viewed as a 2-category (a skeletal one, since antisymmetry
ensures each isomorphism class has only one object).
Many concepts from ordinary category theory can be defined in enriched category theory: commu-
tative diagrams, natural transformations, limits, colimits, etc. all have natural generalizations.

Definition A.17. Let (C, ⊗, I) be a monoidal category. We say that C is a closed monoidal cate-
gory if for all B ∈ C the functor − ⊗ B : C → C admits a right adjoint Hom(−, B) : C → C. ♦

All of the examples of monoidal categories given are in fact closed monoidal categories.
We are now in a position to generalize bimodules; we begin by viewing rings as categories.

Definition A.18. Let (M, µ, η) be a monoid object in a closed monoidal category (C, ⊗, I). We
turn M into a C-category BM with

• The only object being M ;

50

• The morphisms M → M being the image of µ under the currying isomorphism:

C(M ⊗ M, M) ∼= C(M, C(M, M)) ♦

We can also go backwards via that same isomorphism: the monoids in C correspond to the single-
object C-enriched categories. One more step:

Lemma A.19. Let R be a ring. A left R-module is an Ab-enriched functor BR → Ab. ♦

This is proven by unpeeling the many layers of the onion: Ab-enrichedness gives distributivity,
functoriality gives associativity of ·, etc. Now we can finally get to the candidate for generalization:

Lemma A.20. For rings R and S, an (S, R)-bimodule is precisely an Ab-enriched functor Rop ×
S → Ab. ♦

This is the source of the confusion between Sop ×R and Rop ×S for profunctors S −7−→ R: it depends
on whether one considers covariant or contravariant functors (and hence left or right modules) to
be the primitive notion, and is thus wholly irrelevant to the theory: a right R-module is precisely
a left Rop module, where Rop is the ring with multiplication in the opposite order and addition
unchanged.
The tensor product of bimodules gives us a way of “composing” two bimodules, associative and
unital up to unique natural isomorphism. How can we do this? Given an (S, R)-bimodule and
an (R, T)-bimodule, viewed as F : Sop × R → Ab and Rop × T → Ab, how can we get an (S, T)-
bimodule?
Thus, the generalization is as follows: instead of considering enriched functors Aop × B → Ab of
single-object Ab-categories A and B, why not consider enriched functors Aop × B → C for arbitrary
categories enriched over some monoidal category (C, ⊗, I)? We then specialize this to the case
C = Set to consider functors Aop × B → Set for categories A and B.

A.3 Composing Profunctors

We now return to considering general profunctors Aop × B → Set. How can we compose them?
Composition came up naturally in applications, but we need some abstract nonsense to compose
them in general. Suppose we have two profunctors F : A −7−→ B, i.e. F : Aop × B → Set, and
G : B −7−→ C, i.e. G : Bop × C → Set. We want some profunctor F ; G : A −7−→ C. We have the
following things at our disposal:

• The curried functor F̂ : B → SetAop ;

• The curried functor Ĝ : C → SetBop ;

• The Yoneda embedding Y : B → SetBop .

The only way to fit these together is:

B SetAop

C SetBop

F̂

Y

Ĝ

51

We want a functor Aop × C → Set, or equivalently C → SetAop ; we could do this as the bottom
composite if we can find a dashed functor:

B SetAop

C SetBop

F̂

Y

Ĝ

∃?

We can’t always do this exactly, but we can approximate this best using either the left or right
Kan extension (Definition 2.9) of F̂ along Y . Which Kan extension makes more sense in our case?
We need to move sideways to figure this out: consider instead 2-enriched functors Aop × B → 2
for 2-enriched categories A and B; that is, return to the situation of posets. We have an “enriched
Yoneda lemma” posets that says we can embed A ↪→ 2Aop =↓ A. The contravariant Yoneda
embedding by definition maps

Y (a) := 2(−, a)

With our interpretation of 2Aop as ↓ A, this is precisely

Y (a) :=
{
a′ ∈ A : a ≤ A

}
which is the unit ηA from our monad! To go backwards, a is the unique maximal element in η(a).
To talk about Kan extensions, we also need a notion of natural transformation between functors
(monotone maps) F, G : A → B. In analogy with Cat, a natural transformation α : F ⇒ G
amounts to specifying for each a ∈ A a morphism Fa → Ga, which in our case means asserting
that Fa ≤ Ga for all a. Since we have either one or zero morphisms between any two objects, the
naturality square that should commute is redundant for our case.
To compose the relations F : A −7−→ B and G : B −7−→ C, we did:

C ↓ B ↓↓ A ↓ AG ↓F µA

so the dashed functor E :↓ B →↓ A must be the composite of the last two arrows, µA◦ ↓ F .
Observe that the diagram

B ↓ A

↓ B ↓↓ A

F

ηB

↓F

µA

doesn’t just commute up to some natural transformation, it actually commutes; by naturality of η
the bottom triangle commutes:

B ↓ A

↓ A

↓ B ↓↓ A

F

F

ηB

η↓A

↓F

µA

Clearly the upper triangle commutes, and by the unit laws for the monad ↓ the right triangle
commutes. So for this specific case, the identity provides a natural transformation idA : F ⇒ E ◦Y

52

and idA : E ◦ Y ⇒ F . Suppose we have another such left extension (K :↓ B →↓ A, α : F ⇒ K ◦ Y).
We claim that we have E ≤ K, i.e. a natural transformation α : E ⇒ K. We need to show this for
all objects, so fix X ∈↓ B. By assumption, F ≤ K so we have the inequality

K(X) ≥
⋃

b∈X

F (b)

by monotonicity of K, since we have α : F ⇒ K ◦ Y so K must be at least F on all primitive
downward-closed subsets of B. Since K(X) is downward closed, it must also contain the smallest
downward-closed subset containing the right side; this is (µ◦ ↓ F)(X)! Thus, we have a natural
transformation E ⇒ K, so E must be the left Kan extension.
This agrees with the bimodule case; this will not be proven explicitly, but the intuition is as
follows. We would define composition using the tensor product, so for bimodules the functor −⊗A
for some fixed bimodule A would have a right adjoint; if we define composition using the left Kan
extension, the precomposition functor − ◦ f will have a right adjoint (under some appropriate
cocompletness assumptions on the involved categories). The same is true for precomposition in Cat
(Kan extensions), so this also agrees with ordinary functor composition in that sense.
Alternatively, we can observe that we are dealing with a “pseudomonad” on Cat (and ignore size
issues for the moment). For each small category C, the free (small) cocompletion of C (that is, freely
adjoining all colimits to C) is SetCop : the category of presheaves SetCop is cocomplete and every
presheaf Cop → Set is canonically a limit of representable functors (for locally-small categories,
SetCop is no longer necessarily the free cocompletion, since we are only considering colimits of
functors with small domains).
Consider the 2-category Cocomp consisting of cocomplete categories, cocontinuous functors (func-
tors preserving colimits), and natural transformations. We can define a 2-functor (a functor that
is functorial up to natural isomorphism) P : Cat → Cocomp via the Yoneda embedding: we set
P (C) := SetCop , and we send a functor F : C → D to LanY Y ◦ F :

C D

SetCop SetDop

F

Y Y

LanY Y ◦F

or alternatively we send it to Lanop
F : SetCop → SetDop ; since both share the same universal property,

they are isomorphic. In particular, PF ⊣ F ∗ so PF preserves colimits and PF : PC → PD is
well-defined. We need to deal with 2-functors because a priori we don’t have P (g ◦ f) = Pg ◦ Pf ,
but will be true up to canonical natural isomorphism by uniqueness of colimits.
It turns out that this functor P defines a (pseudo) left adjoint to the forgetful functor U : Cocomp →
Cat (ignoring size issues): we have a natural equivalence

Cocomp(PC, D) ≃ Cat(C, UD)
that follows from the Yoneda lemma. Thus, we get a “pseudomonad” structure on Cat via the
composite U ◦P . From the computations in the other monad and the definition of our functor P , it
is intuitively clear that composition of F : C → SetDop and G : D → SetEop in some relaxed version
of the Kliesli category for this pseudomonad will be given by (a factorization of)

C SetDop SetEopF LanY G

exactly as it was in the poset case. Thus, our definition of composition of arbitrary profunctors is
in some sense a direct generalization of the intuition given by the monads on Poset and Set.

53

	Introduction
	Databases via Functor Categories
	Schemas as Categories
	Instances as Functors
	Data Migration
	The Problem
	A Diversion to Monads

	Databases via Slice Categories
	Typed Instances
	A Primer on Pasting Diagrams
	Typed Data Migration
	Parsing the Data Migration Functors
	Smaller Problems

	Databases via Algebraic Profunctors
	Profunctors and Algebraic Theories
	Schemas as Algebraic Profunctors
	Collages and Instances
	Data Migration
	Further Development

	Conclusion
	References
	Motivating Profunctors
	Profunctors as Generalized Relations
	Profunctors as Generalized Bimodules
	Composing Profunctors

